Tuesday, 7 May 2013

354. 12 Biggest Advantages of Bluetooth Technology


12 Biggest Advantages of Bluetooth Technology

  • Wireless synchronisation – you can eliminate wires along with improving safety with Bluetooth. You need not worry about carrying connection cables while travelling with your laptop or other wireless devices.
  • Economical -   The Bluetooth technology is cheap to implement for the companies resulting in lower costs hence, these savings are passed from the company to you making it economical.
  • Universally accepted - Bluetooth technology is accepted world wide, with it gaining so much popularity, you can rely on it for years to come with an advent of more and more devices started to use Bluetooth technology.
  • Automatic – setting up Bluetooth connectivity is automatic Bluetooth and doesn’t need professionals. When two or more devices enter a range of up to 30 feet of each other the communication automatically begins between them.
  • Upgradeable - Upgradeable Bluetooth standard versions of Bluetooth in the offer various new advantages and backward compatibility with older versions.
  • Standard protocol - Bluetooth is standardized wireless guarantees the high level of compatibility among devices. Bluetooth devices connect to each other irrespective of their model.
  • Instant PAN (Personal Area Network) - You can have your own personal are network for sharing data among your group consisting of up to seven Bluetooth devices within a range of up to 30 feet.
  • Faster data and voice Sharing – you can share data and voice communications via Bluetooth with compatible devices connected to it.
  • Simplifies communication while driving – companies like parrot manufactures Bluetooth car kits resolving the audio and communication issues arising while driving, as Bluetooth simplifies talking and listening music on your cell phone while driving.
  • Avoids interference from other wireless devices - Bluetooth devices avoid interference from other wireless devices with the usage of technique known as frequency hopping, and low power wireless signals.
  • Low power consumption - Bluetooth with the help of low power signals technology requires very less energy reducing the battery consumption or electrical power.
  • Best alternative to data transfer - in case of corrupt flash/pen drives or DVD/CD ROM. It has helped a lot of times when I forgot my pen drive. 

353. Peering


Peering

 

Peering is a voluntary interconnection of administratively separate Internet networks for the purpose of exchanging traffic between the customers of each network. The pure definition of peering is settlement-free or "sender keeps all," meaning that neither party pays the other for the exchanged traffic, instead, each derives revenue from its own customers. Marketing and commercial pressures have led to the word peering routinely being used when there is some settlement involved, even though that is not the accurate technical use of the word. The phrase "settlement-free peering" is sometimes used to reflect this reality and unambiguously describe the pure cost-free peering situation.
Peering requires physical interconnection of the networks, an exchange of routing information through the Border Gateway Protocol (BGP) routing protocol and is often accompanied by peering agreements of varying formality, from "handshake" to thick contracts.

How peering works

The Internet is a collection of separate and distinct networks, each one operating under a common framework of globally unique IP addressing and global BGP routing.
The relationships between these networks are generally described by one of the following three categories:
  • Transit (or pay) - You pay money (or settlement) to another network for Internet access (or transit).
  • Peer (or swap) - Two networks exchange traffic between each other's customers freely, and for mutual benefit.
  • Customer (or sell) - Another network pays you money to provide them with Internet access.
Furthermore, in order for a network to reach any specific other network on the Internet, it must either:
  • Sell transit (or Internet access) service to that network (making them a 'customer'),
  • Peer directly with that network, or with a network who sells transit service to that network, or
  • Pay another network for transit service, where that other network must in turn also sell, peer, or pay for access.
The Internet is based on the principle of global reachability (sometimes called end-to-end reachability), which means that any Internet user can reach any other Internet user as though they were on the same network. Therefore, any Internet connected network must by definition either pay another network for transit, or peer with every other network who also does not purchase transit.

Motivations for peering

Peering involves two networks coming together to exchange traffic with each other freely, and for mutual benefit. This 'mutual benefit' is most often the motivation behind peering, which is often described solely by "reduced costs for transit services". Other less tangible motivations can include:
  • Increased redundancy (by reducing dependence on one or more transit providers).
  • Increased capacity for extremely large amounts of traffic (distributing traffic across many networks).
  • Increased routing control over your traffic.
  • Improved performance (attempting to bypass potential bottlenecks with a "direct" path).
  • Improved perception of your network (being able to claim a "higher tier").
  • Ease of requesting for emergency aid (from friendly peers).

Physical interconnections for peering

Scheme of interconnection and peering of autonomous systems
The physical interconnections used for peering are categorized into two types:
  • Public peering - Interconnection utilizing a multi-party shared switch fabric such as an Ethernet switch.
  • Private peering - Interconnection utilizing a point-to-point link between two parties.

Public peering

Public peering is accomplished across a Layer 2 access technology, generally called a shared fabric. At these locations, multiple carriers interconnect with one or more other carriers across a single physical port. Historically, public peering locations were known as network access points (NAPs); today they are most often called exchange points or Internet exchanges ("IXP" or "IX"). Many of the largest exchange points in the world can have hundreds of participants, and some span multiple buildings and colocation facilities across a city.
Since public peering allows networks interested in peering to interconnect with many other networks through a single port, it is often considered to offer "less capacity" than private peering, but to a larger number of networks. Many smaller networks, or networks who are just beginning to peer, find that public peering exchange points provide an excellent way to meet and interconnect with other networks who may be open to peering with them. Some larger networks utilize public peering as a way to aggregate a large number of "smaller peers", or as a location for conducting low-cost "trial peering" without the expense of provisioning private peering on a temporary basis, while other larger networks are not willing to participate at public exchanges at all.
A few exchange points, particularly in the United States, are operated by commercial carrier-neutral third parties. These operators typically go to great lengths to promote communication and encourage new peering, and will often arrange social events for these purposes.

 

Private peering

Private peering is the direct interconnection between only two networks, across a Layer 1 or 2 medium that offers dedicated capacity that is not shared by any other parties. Early in the history of the Internet, many private peers occurred across 'telco' provisioned SONET circuits between individual carrier-owned facilities. Today, most private interconnections occur at carrier hotels or carrier neutral colocation facilities, where a direct crossconnect can be provisioned between participants within the same building, usually for a much lower cost than telco circuits.
Most of the traffic on the Internet, especially traffic between the largest networks, occurs via private peering. However, because of the resources required to provision each private peer, many networks are unwilling to provide private peering to "small" networks, or to "new" networks who have not yet proven that they will provide a mutual benefit.

 

Peering agreements/contracts

Throughout the history of the Internet, there have been a spectrum of kinds of agreements between peers, ranging from handshake deals to peering contracts which may be required by one or both sides. Such a contract sets forth the details of how traffic is to be exchanged, along with a list of expected activities which may be necessary to maintain the peering relationship, a list of activities which may be considered abusive and result in termination of the relationship, and details concerning how the relationship can be terminated. Detailed contracts of this type are typically used between the largest ISPs, and the ones operating in the most heavily-regulated economies, accounting for about 1-2% of peering relationships overall.

 

History of peering

The first Internet exchange point was the Commercial Internet Exchange (CIX), formed by Alternet/UUNET (now Verizon Business), PSI, and CERFNET to exchange traffic without regard for whether the traffic complied with the acceptable use policy (AUP) of the NSFNet or ANS' interconnection policy. The CIX infrastructure consisted of a single router, managed by PSI, and was initially located in Santa Clara, California. Paying CIX members were allowed to attach to the router directly or via leased lines. After some time, the router was also attached to the Pacific Bell SMDS cloud. The router was later moved to the Palo Alto Internet Exchange, or PAIX, which was developed and operated by Digital Equipment Corporation (DEC).
Another early exchange point was Metropolitan Area Ethernet, or MAE, in Tysons Corner, Virginia. When the United States government decided to de-fund the NSFNET backbone, Internet exchange points were needed to replace its function, and initial governmental funding was used to aid the MAE and bootstrap three other exchanges, which they dubbed NAPs, or "Network Access Points," in accordance with the terminology of the National Information Infrastructure document. All four are now defunct or no longer functioning as Internet exchange points:
As the Internet grew, and traffic levels increased, these NAPs became a network bottleneck. Most of the early NAPs utilized FDDI technology, which provided only 100 Mbit/s of capacity to each participant. Some of these exchanges upgraded to ATM technology, which provided OC-3 (155 Mbit/s) and OC-12 (622 Mbit/s) of capacity.
Other prospective exchange point operators moved directly into offering Ethernet technology, such as gigabit Ethernet (1000 Mbit/s), which quickly became the predominant choice for Internet exchange points due to the reduced cost and increased capacity offered. Today, almost all significant exchange points operate solely over Ethernet, and most of the largest exchange points offer ten gigabit Ethernet (10,000 Mbit/s) service.
During the dot-com boom, many exchange point and carrier neutral colocation providers had plans to build as many as 50 locations to promote carrier interconnection in the United States alone. Essentially all of these plans were abandoned following the dot-com bust, and today it is considered both economically and technically infeasible to support this level of interconnection among even the largest of networks.

 

Depeering

By definition, peering is the voluntary and free exchange of traffic between two networks, for mutual benefit. If one or both networks believes that there is no longer a mutual benefit, they may decide to cease peering: this is known as depeering. Some of the reasons why one network may wish to depeer another include:
  • A desire that the other network pay settlement, either in exchange for continued peering or for transit services.
  • A belief that the other network is "profiting unduly" from the settlement free interconnection.
  • Concern over traffic ratios, which related to the fair sharing of cost for the interconnection.
  • A desire to peer with the upstream transit provider of the peered network.
  • Abuse of the interconnection by the other party, such as pointing default or utilizing the peer for transit.
  • Instability of the peered network, repeated routing leaks, lack of response to network abuse issues, etc.
  • The inability or unwillingness of the peered network to provision additional capacity for peering.
  • The belief that the peered network is unduly peering with your customers.
  • Various external political factors (including personal conflicts between individuals at each network).
In some situations, networks who are being depeered have been known to attempt to fight to keep the peering by intentionally breaking the connectivity between the two networks when the peer is removed, either through a deliberate act or an act of omission. The goal is to force the depeering network to have so many customer complaints that they are willing to restore peering. Examples of this include forcing traffic via a path that does not have enough capacity to handle the load, or intentionally blocking alternate routes to or from the other network.

 

Modern peering

Peering locations

The modern Internet operates with significantly more peering locations than at any time in the past, resulting in improved performance and better routing for the majority of the traffic on the Internet. However, in the interests of reducing costs and improving efficiency, most networks have attempted to standardize on relatively few locations within these individual regions where they will be able to quickly and efficiently interconnect with their peering partners.
The primary locations for peering within the United States are generally considered to be.
  • San Francisco Bay Region (San Jose CA, Palo Alto CA, Santa Clara CA, San Francisco CA)
  • Washington DC / Northern Virginia Region (Washington, DC, Ashburn VA, Reston VA, Vienna VA)
  • New York City Region (New York NY, Newark NJ)
  • Chicago Region (Chicago IL)
  • Los Angeles Region (Los Angeles, CA)
  • Dallas Region (Dallas, TX, Plano, TX, Richardson, TX)
  • Miami, FL
  • Seattle, WA
For international traffic, the most important locations for peering are generally considered to be
Europe;
  • Amsterdam, Netherlands
  • London, United Kingdom
  • Frankfurt, Germany
Rest of the World;
  • Tokyo, Japan
  • Hong Kong, China
  • Seoul, South Korea
  • Singapore

 

Exchange points

The largest individual exchange points in the world are AMS-IX in Amsterdam, followed by DE-CIX in Frankfurt Germany and LINX in London. The next largest exchange point is generally considered to be JPNAP in Tokyo, Japan. The United States, with a historically larger focus on private peering and commercial public peering, has a much smaller amount of traffic on public peers compared to other regions which operate non-profit exchange points. The combined exchange points in multiple cities operated by Equinix are generally considered to be the largest and most important, followed by the PAIX facilities which are operated by Switch and Data. Other important but smaller exchange points include LIPEX and LONAP in London UK, NYIIX in New York, and NAP of the Americas in Miami, Florida.
URLs to some public traffic statistics of exchange points include:

 

Peering and BGP

A great deal of the complexity in the BGP routing protocol exists to aid the enforcement and fine-tuning of peering and transit agreements. BGP allows operators to define a policy that determines where traffic is routed. Three things commonly used to determine routing are local-preference, multi exit discriminators (MEDs) and AS-Path. Local-preference is used internally within a network to differentiate classes of networks. For example, a particular network will have a higher preference set on internal and customer advertisements. Settlement free peering is then configured to be preferred over paid IP transit.
Networks that speak BGP to each other can engage in multi exit discriminator exchange with each other, although most do not. When networks interconnect in several locations, MEDs can be used to reference that network's interior gateway protocol cost. This results in both networks sharing the burden of transporting each others traffic on their own network (or cold potato). Hot-potato or nearest-exit routing, which is typically the normal behavior on the Internet, is where traffic destined to another network is delivered to the closest interconnection point.

 

Law and policy

Internet interconnection is not regulated in the same way that public telephone network interconnection is regulated. Nevertheless, Internet interconnection has been the subject of several areas of federal policy. Perhaps the most dramatic example of this is the attempted MCI Worldcom/Sprint merger. In this case, the Department of Justice signaled that it would move to block the merger specifically because of the impact of the merger on the Internet backbone market. In 2001, the Federal Communications Commission's advisory committee, the Network Reliability and Interoperability Council recommended that Internet backbones publish their peering policies, something that they had been hesitant to do beforehand. The FCC has also reviewed competition in the backbone market in its Section 706 proceedings which review whether advanced telecommunications are being provided to all Americans in a reasonable and timely manner.
Finally, Internet interconnection has become an issue in the international arena under something known as the International Charging Arrangements for Internet Services (ICAIS).[11] In the ICAIS debate, countries underserved by Internet backbones have complained that it is unfair that they must pay the full cost of connecting to an Internet exchange point in a different country, frequently the United States. These advocates argue that Internet interconnection should work like international telephone interconnection, with each party paying half of the cost.[12] Those who argue against ICAIS point out that much of the problem would be solved by building local exchange points. A significant amount of the traffic, it is argued, that is brought to the US and exchanged then leaves the US, using US exchange points as switching offices but not terminating in the US.[13] In some worst-case scenarios, traffic from one side of a street is brought to all the way to Miami, exchanged, and then returned to another side of the street. Countries with liberalized telecommunications and open markets, where competition between backbone providers occurs, tend to oppose ICAIS.

352. -: Password Hacking :-


-: Password Hacking :-


Password cracking is the process of recovering secret passwords from data that has been stored in or transmitted by a computer system. A common approach is to repeatedly try guesses for the password.
Most passwords can be cracked by using following techniques :

1) Hashing :- Here we will refer to the one way function (which may be either an encryption function or cryptographic hash) employed as a hash and its output as a hashed password.
If a system uses a reversible function to obscure stored passwords, exploiting that weakness can recover even 'well-chosen' passwords.
One example is the LM hash that Microsoft Windows uses by default to store user passwords that are less than 15 characters in length.
LM hash breaks the password into two 7-character fields which are then hashed separately, allowing each half to be attacked separately.
Hash functions like SHA-512, SHA-1, and MD5 are considered impossible to invert when used correctly.

2) Guessing :- Many passwords can be guessed either by humans or by sophisticated cracking programs armed with dictionaries (dictionary based) and the user's personal information.
Not surprisingly, many users choose weak passwords, usually one related to themselves in some way. Repeated research over some 40 years has demonstrated that around 40% of user-chosen passwords are readily guessable by programs. Examples of insecure choices include:
* blank (none)
* the word "password", "passcode", "admin" and their derivatives
* the user's name or login name
* the name of their significant other or another person (loved one)
* their birthplace or date of birth
* a pet's name
* a dictionary word in any language
* automobile licence plate number
* a row of letters from a standard keyboard layout (eg, the qwerty keyboard -- qwerty itself, asdf, or qwertyuiop)
* a simple modification of one of the preceding, such as suffixing a digit or reversing the order of the letters.
and so on....
In one survery of MySpace passwords which had been phished, 3.8 percent of passwords were a single word found in a dictionary, and another 12 percent were a word plus a final digit; two-thirds of the time that digit was.
A password containing both uppercase &  lowercase characters, numbers and special characters too; is a strong password and can never be guessed.

3) Default Passwords :- A moderately high number of local and online applications have inbuilt default passwords that have been configured by programmers during development stages of software. There are lots of applications running on the internet on which default passwords are enabled. So, it is quite easy for an attacker to enter default password and gain access to sensitive information. A list containing default passwords of some of the most popular applications is available on the internet.
Always disable or change the applications' (both online and offline) default username-password pairs.

4) Brute Force :- If all other techniques failed, then attackers uses brute force password cracking technique. Here an automatic tool is used which tries all possible combinations of available keys on the keyboard. As soon as correct password is reached it displays on the screen.This techniques takes extremely long time to complete, but password will surely cracked.
Long is the password, large is the time taken to brute force it.

5) Phishing :- This is the most effective and easily executable password cracking technique which is generally used to crack the passwords of e-mail accounts, and all those accounts where secret information or sensitive personal information is stored by user such as social networking websites, matrimonial websites, etc.
Phishing is a technique in which the attacker creates the fake login screen and send it to the victim, hoping that the victim gets fooled into entering the account username and password. As soon as victim click on "enter" or "login" login button this information reaches to the attacker using scripts or online form processors while the user(victim) is redirected to home page of e-mail service provider.
Never give reply to the messages which are demanding for your username-password, urging to be e-mail service provider.

It is possible to try to obtain the passwords through other different methods, such as social engineering, wiretapping, keystroke logging, login spoofing, dumpster diving, phishing, shoulder surfing, timing attack, acoustic cryptanalysis, using a Trojan Horse or virus, identity management system attacks (such as abuse of Self-service password reset) and compromising host security.
However, cracking usually designates a guessing attack.

647. PRESENTATION SKILLS MBA I - II

PRESENTATION  SKILLS MBA   I - II There are many types of presentations.                    1.       written,        story, manual...